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February, 1963
REFERENCE: Contract NObs. 86437

SF-013-11-01,
Task 1359

TO: Chief, Bureau of Ships
Department of the Navy
Washington 25, D. C.
ATTN: Code 345

FROM: Edwin J. Waller, Project Director
School of Civil Engineering
Oklahoma State University
Stillwater, Oklahoma

SUBJECT: Final Report

This report summarizes the work performed under contract

NObs 86437 during the period February 1, 1962,to January 31, 1963.

Work is continuing under contract NObs 88297 which, terminates Jan.-

uary 31, 1964.

The over-all objective of this project was to aid the Bureau

of Ships in prevention of excessive liquidborne noise levels at critical

points in shipboard piping systems. This entails the following:

A. To develop a standard method of evaluating the noise
producing characteristics of pumps and flow control devices
in piping systems.

B. To develop the necessary information leading to the pre-
paration of standards and specifications for pumps and
control valves by studying the response of various typical
piping arrangements to noise inputs typical of the pumps
and control devices and presenting the results in terms
of the acoustical levels at the discharge of the piping sys-
tem.

C. To carry out necessary mathematical analyses as a part
of B. above which yield pertinent information useful for
improving design and analysis techniques for the over-all
pump-piping system including design of noise filters.

Liquidborne noise is generated in pumps and control valves by
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fluid turbulence, cavitation, and by the acceleration of the liquid by

moving mechanical parts such as vanes or pistons. The noise thus

created at the pump or valve is transmitted (i. e. propagated) in the

form of pressure pulsations throughout the piping system. Additional

noise is generated by the fluid as it flows through the piping system,

depending upon its configuration. This project was concerned only

with the noise which is generated at the pump or control valve.

The noise intensity at any given point in the system depends

on the dynamic response capability of the piping system and the inten-

sity of the noise generated by the pump or control device. There are

two fundamental means of altering the noise level. These are either

to redesign the piping system,minimizing the noise, or to decrease the

noise level at the source.

Generally the piping system and the pumps are designed by

different persons for performance criteria which gives little or no

consideration of noise generation and subsequent transmission. In

some systems the noise level is acceptable while in others it is not.

This is due to differences in the piping system parameters such as

elasticity, viscosity, and density of the liquid; the elasticity, diameter,

and length of the pipe; and the terminating conditions of the piping

system. Thus, the parameters of the piping system have considerable

influence on the noise spectrum.

Figure la shows the types of discontinuities encountered in

shipboard piping systems. These include changes in size (A), looping

of lines (B to C), and stub lines (D). Additional complications arise

when multiple sources and multiple terminal points are looped into

one system, as indicated by Figure lb.
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Specific Objectives and Resume of Results.

A literature survey of pertinent publications and reports was

the first objective of this project. Material was supplied by the Okla-

homa State University Library and from the Bureau of Ships. The

results are shown in the Bibliography of this report. Although the

results of the survey were informative, no practical method of deter-

mining the response of complex piping systems was found in the litera-

ture.

The next objective was to establish a practical method of de-

termining the response of the complex piping system by mathematical

analysis. This analysis was carried out and presented with The Third

Quarterly Report of this project. Necessary revisions have been made

and are presented in Chapters I to IV of this report. The results

include the mathematical methods used in the analysis, the idealiza-

tibnsinvolved in the physical model of the piping system, the techni-

ques and formulas for finding the transfer functions relating the pres-

sure spectra at various points in the system, and general problems

involving input specification. The results are formidable, but indicate

a technique of analysis which can be carried out. The limitation, is

computer facilities.

Considerable time was spent in developing and evaluating

various analysis methods with the objective of finding the most feasible

procedure. The most promising of these is discussed in Chapter V.

Although the transfer functions developed in Chapter III are valid for

all frequencies, a substantial amount of information could be gained

from the maximum and minimum of the transfer functions if they could

be determined. However, the results shown in Chapters V and VI
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giving upper and lower bounds of pressure spectra are unreasonably

extreme and impractical for use in a simplified analysis.

Other results are shown in Chapter VI. These include transfer

function calculations for suction lines in a system similar to the auxi-

liary sea water system of the USS TINOSA ( SS(N)606) in iWhic', allow-

able pressure spectra are found for the frequency range 0 < f < 10, 000

cps. The results "de-bugged" part of a general program which will be

used in future studies. Essentially this technique involved calculation

of the transfer functions in complex number form.

The mathematical technique under development at Oklahoma

State University is being adapted for computer solution. The programs

developed will use realistic piping and flow data obtained from the auxi-

liary sea water system of the TINOSA. During the last two months of

the contract period, some time .was spent in collecting information such

as attenuation, characteristic impedance, and phase constants for the

sea water system from the drawings of the system, and in analysis of

heat exchangers to determine their dynamic response, Work continues

toward the over-all goals.



CHAPTER I

TRANSFORM METHODS IN SYSTEM ANALYSIS

1. 1 Introduction.

Operational calculus, or transform methods, has proven to be

an elegant tool in the analysis of linear systems. The system under

consideration is no exception. Certain relationships involving trans-

form methods are dealt with in this chapter.

1.2 Fourier Series.

Adequate description of the dependent variable(s) involved in an

analysis is important. For periodic functions, this is often accom-

plished by the Fourier series or, as to be used here, the complex

form of the Fourier seri-s.

Although any independent variable can be used, the dependent

variable will be considered a function of time f(t) and periodic in time

T. Then (108)

f(t) = 0 F(wn) e n - (n. )
n=-oo

where the complex coefficient
T/2 '~ t

F( ) / f(t) e -jn dt , (1.2)

-T/2

and the nth harmonic of the fundamental angular frequency

* Numbers in parentheses refer to references in Bibliography.

6
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2 T-- (1.3)

1. 3 Fourier and Laplace Transforms.

Mathematical definitions and justifications of Fourier and Laplace

transforms are available in many sources (99, 114) The purpose of

this section is to establish the interrelationship of the Fourier series

description of a function and the Fourier tr.ansform.0f the functi6n (108)

Equation (1. 1) can be written

f(t) =1 F(w ) e W n tw (1.4)
n=-oo

where w I is the fundamental angular frequency. As the period T tends

to infinity, the function f(t) tends to be aperiodic, the fundamental an-

gular frequency wi becomes a differential of angular frequency dw, and

the nth harmonic angular frequency w n becomes a continuous angular

frequency w. In the limit, f(t) becomes aperiodic, and Equation (1. 4)

becomes
00

f(t) -F() ejWt dw (1. 5)

00

where 0o

F(w) = f f(t) e- j•t dt (1.6)

-o0

from Equation (1.:2)

Equations (1. 5) and (1. 6) are recognized as a Fourier transform

pair. The corresponding Laplace transform relationships are

E+joo

f(t) f2j F(s)e ds, (1.7)

E-jo0c
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and
o0

F(s) J f(t) e-st dt (1.8)

0

where s is the complex, variable u i- jw. If the function f(t)'is defined

as

f (t) = (i..9)
t< >0

it is evident that the Laplace and 'Pgurier transform pairs becpme iden-

tical when s is replaced by jw

(108)
1. 4 Spectrum Analysis.

From the results of preceding discussion, it is concluded that a

dependent variable can be described in either the time or frequency

domain. In the time domain, the variable can be expressed by an ap-

propriate analytical function or by a Fourier series if periodic..

The frequency domain description of a periodic function is evident

from Equation (1. 1). The function

1
T F(on)

for n = 0, + 1, 2, 3 ... gives a measure of the periodic component of

f(t) at the nth harmonic frequency wn. In general, F(wn) is complex,

and
1 1 1

FT F(w~) FCn ]e10 n (1.1i0)

where -0 is the phase angle of F(wn). Plottingn n)
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versus wn (or n) results in a discrete spectrum known as the amplitude

spectrum of f(t). Similarly, the graph e versus cj (or n) is the phase
nA

spectrum.

For the non-periodic function f(t), the function

1 F (w) F(=w) I eJ(() (I. I

is a continuous function of w and is in general. complex. It is the com-

plex continuous spectrum of f(t). The amplitude.density spectrum of

f(t) is

1 7

and its phase density spectrum is 0(w). Since division by 27r in Equation

(1. 11) is simply a normalizing factor, the function IF(w)I shall here-

after be referred to as the amplitude density spe'ctrum of f(t).

1. 5 Transfer Functions and Frequency Response.

The analysis of a linear system by Laplace transform methods

often results in a relationship of the form (99, 114)

F (s) = H(s) Fi(s) (1. 12)

where F 0 (s) and Fi(s) are the Laplace transforms of the system output

fo(t) and input fi(t), respectively. The function H(s) is usually referred
01

to as a transfer function or system function.

If fi(t) is defined as in Equation (1. 9), the variable s' can be re-

placed by jw in Equation (1. 12) to give

*When s is replaced by jw in a function'F(s), the result will be
denoted F(w) rather than F(jw).
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F o(c) = H (w) Fi(W) (1. 13)

The function Fo (w) will be called the frequency response of the system.

The amplitude density spectrum of the system output in terms

of the input spectrum and system function follows by taking the absolute

value of both sides of Equation (1. 13). Thus,

'The, term transfer function will be used interchangeably to des-

cribe either H(s), H(co), or JH(cw).j



CHAPTER II

PHYSICAL SYSTEM

2, 1 Introduction.

This chapter contains the following:

1. Derivation of differential equations describing compressible,

turbulent flow of water or similar liquid in a non-rigid cylin-

drical conduit.

2. Discussion of conditions imposed on system.

3. Laplace transform domain solution of describing equations.

4. System frequency response and discussion of system para-

meters.

The results of this investigation comprise a major part of the

necessary information required to determine the response of a piping

system such as the one shown in Figure la.

2. 2 Derivation of Describing Equations.

Figure 2 depicts a liquid-filled cyli~nder with non-rigid walls

under compressible, turbulent flow conditions. Conditions imposed

on the system follow and hereafter will be referred to by number:

1. The flow is one-dimensional.

2. The frictional resistance is a function of some nonlinear

operation on the fluid velocity and system parameters. It

can be expressed as the product of a constant and the instan-

taneous flow rate variation.
11
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3. All energy dissipation is accounted for by Condition 2.

4. The rate of change in fluid velocity with respect to length

is negligible as compared to its rate of change with respect

to time.

5. The instantaneous pressure is constant over the cross

section.

6. The rate of change in mass density with respect to length is

negligible as compared to its rate of change with respect to

time.

7. The velocity of wave propagation in the liquid cylinder is

constant.

m ean •///

flow .

5xx

Figure 2.

The total velocity ut of a liquid particle is considered to be the

sum of a mean velocity u and an instantaneous velocity variation u

assumed positive in the direction of mean flow, i.e., ut = u + u .

Likewise, -the total pressure Pt is the sum of a mean pressure p and

an instantaneous pressure variation p, i.e., Pt = p + p.

Considering conditions 1, 2, 3, 4, and 6 and assuming the positive

lateral direction x to oppose the mean flow, the following, relationships

will completely describe the system (112)
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Equation of motion:

-Ft- -- P + Gut= 0 (2.1)

where p is the liquid mass density and G is a constant.

Equation of continuity:

Lut , L -: 0 (2.2)

Equation of state:

K'
apt - p (2.3)

where K' denotes the bulk modulus of the liquid and conduit combined.

It is given by (114)

K - KbE
KD + bE (2.4)

where K denotes liquid bulk modulus, b is conduit wall thickness, E

is the modulus of elasticity of wall material, and D denotes inside dia-

meter.

Equations (2. 2) and (2. 3) are combined to give

8x K' t 0 
(2.5)

Integrating Equations (2. 1) and (2. 5) over a control volume A6x and

using condition 5,

A - + P + Bq = 0, (2.6)

and
_q_ +A Pt - 0 (2.7)
ax K' at
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where A denotes pipe area and B is a constant. The total volume flow

rate qt is the sum of a mean flow rate q and an instantaneous flow rate

variation q assumed positive in the direction of mean flow, i. e.,

qt = q + q. The nonlinear equation (2.6) is linearized as follows( 9 3 .

If the flow rate is considered constant at a cross-section' Equation

(2. 6) becomes the slope of the pressurge grade line, i.e.,

-2
-n fpq 28

-- B q - (2.8)2 DA

where f is the Darcy-Weisbach friction factor. Then

B =fpq 2 -n _ pf (2.9)
2DA2  

(29

where pf denotes the pressure peeded to overcome the frictional re-

sistance of the pipe. The value of n is estimated from experience or

experiment and should range between 1. 65 and 2. 05,

The nonlinear term in Equation (2. 6) is rewritten and expanded

as follows:

Bqt H

= B~n ( 1 +•q)n

q .. (2.10)

The series in Equation (2. 10) is convergent for "q < q , and

since q<<q, the series is assumed sufficiently approximated by its

first two terms. Equation (2. 6) is now

-apt "a' + -- f + np = 0 (2.11)
8 A at ~
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The desired describing differential equations for instantaneous

variations in flow rate and pressure follow directly from Equations

(2. 11) and (2. 7) by replacing qt and p , by their respective sums. They

are:

+1o + P 8q + npf
x A t- q = 0 (2.12)

and

aq + = 0 (2.13)ýT K' at

2. 3 Imposed Conditions.

The conditions imposed on the physical system are discussed and

validated to varying degrees in the following.

1. In any real piping system, a propagated wave is never one-

dimensional, because the elasticity of the pipe walls allows

radial motion. But over a certain frequency range from 0

to w c radians per second there exists only one propagated

wave, or one mode of propagation, which is the axial, or

plane wave, mode. This mode is denoted the (0, 0) mode.

The cut-off frequency w c at which the first radial mode of

propagation occurs Ethe (0, 1) mode] for nondissipative con-

ditions can be determined by the following equations given

by Jacobi (41):

J 0 (z) 2p 2 b 2Eb
zJ 1 (z) p1 D p1 Dc - 2z2 (2.14)

and.

2c D 0 1 (2.15)



16

where z is some characteristic value, J0 and J are Bessel

functions! of the first kind, and p. and P2 are the mass den-

sities of the fluid and pipe material, respectively. The first

real characteristic value z 0 1 that satisfies Equation (2. 14)

is substituted into Equation (2. 15) to obtain w c. For 8" stan-

dard steel pipe, fc 6900 cycles per second. For smaller

sizes of pipe the value of w c increases substantially. To the

best knowledge of the authors, the subject of cut--off fre-

quencies for dissipative conditions is nonexistent in the litera-

ture. The cut-off frequency should be somewhat higher for

dissipative conditions than that given by Equations (2. 14) and

(2. 15). It is concluded that for a relatively rigid pipe, the

one-dimensional condition is valid for frequencies up to the

cut-off frequency.

2. The perturbation process used in the derivation of the des-

cribing equation to linearize the frictional dissipation term

was proposed and verified experimentally for low frequencies

by Waller (93) There seems to be no good reason for dis-

counting its validity in the frequency range of one-dimen-

sional propagation.

3. The effect of heat transfer on a propagated wave could be

considered resulting in a third describing differential equa-

tion as done by Brown (15) but it is believed that the rather

empirical frictional dissipation term used in the describing,

equations will account for all energy dissipation.

4. The condition that the rate of change in fluid velocity with

respect to length is negligible has been used for many years
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(68)
in describing wave propagation in liquid cylinders. Phillips ,

in showing the acoustic wave equation adequate for describing

turbulent flow in liquid-filled steel pipes,has shown this term

to be negligible.

5. If the one-dimensional wave condition is valid, it follows that

the instantaneous pressure is essentially uniform over the

cross section.

6. As in Condition 4, the rate of change in mass density with

respect to length has classically been considered negligible.

7. Strictly speakihg,, the velocity of wave propagation in a

liquid cylinder with non-rigid walls is not constant with fre-

quency. With increasing frequency, the flexural vibrations

of the walls tend to impede the propagation causing a decrease

in the wave velocity. Mathematical expressions to determine

the velocity of wave propagation as a function of frequency

are given in the paper by Jacobi( 4 1 ). For a relatively rigid

pipe, such as a standard steel pipe, the velocity of wave

propagation in the pipe, a, is essentially constant, and (1 1 4 )

a = (2.16)

Rather than calculating the velocity of propagation by Equa-

tions (2. 4) and (2. 16), it can be determined for different

pipe sizes and fluids from nomographs available in many

papers and books (111)

2. 4 Solution of Differential Equations.

The discussion is facilitated by introduc'ng three systemr para-

meters. They are:



Coefficient of inertia, 18

A (2.17)

Coefficient of resistance:,

n p.,

R - (2.18)
lq

Coefficient of capacitance,

A 1
C = - 2 (2.1.9)K? La

In terms of these parameters, the describing differential Equa-

tions (2. 12) and (2. 13) are:

- ap (xt) + L aq (x,t) + R q(x,t) = 0 (2.20)

ax at

and

- 8q (x,t) + C " p (x,t) 0 (2,21)
ax at

Using Laplace transform methods, Equations (2. 20) and (2. 21)

are solved for pressure and flow rate in the transformed time domain

as follows (96)

Transforming Equations (2. 20) and (2. 21) with the Laplace inte-

gral

00

F(s) f f(t) e-st dt,

0

axP S) + (R + sL);Q(x,s) 0 (2.22)

and

- xQ (XS) + s CP(x,s) 0 (2.23)
ax
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where p(x, 0) anýd q(x, 0) are zero. Transforming the above equations

with the Laplace integral

f -0 f(x) e dx

-XP(X, s) + (R + sL) Q (Xs) = - P(0, s) , (2.24)

and

- •(X,,s)+sCD (X,s) = - Q(O, S). (2.25)

Solving Equations (2. 24) and (2. 25) for P(X, s) and Q(X, s),

P(X,s) ZcQ(0, s) 'y2 _o2 ( (2.26)

and

A P (0, S) I \ r,~.\~~
Q(X,s) = Ze '2:- + _52 .22T2 (2.27)

where

-2 = sC (R + sL), (2.28)

and

z2 R +sL
c sC (2.29)

Evaluating Equations (2. 26) and (2. 27) with the inversion integral

1 f=jo
f(x) = T- 2X) e dX,

E-joo

P(x, s) = P(0, s) cosh 'yx + Zc Q(0, s) sinh Y'x , (2.30)

and

Q(x, s) = Q(0, s) cosh yx + P(0, s) sinh -yx (2. 31)
c
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Equations (2. 30) and (2. 31) provide the Laplace transform domain

solution for pressure and flow rate fluctuation at a point in a pipe in terms

of a propagation coefficient y, a characteristic impedance Zc, and pres-

sure and flow rate variation at a reference point x = 0.

If the mean flow is in the :direction of positive lateral distance,

it is an easy matter to verify that the preceding analysis is valid if x is

replaced by -x in all functional entities. Thus, if mean flow is from

right to left in Figure 2,

P(x,s) P(0, s) cosh ,x-Zc Q(0, s) sinh yx, (2. 32)

and

Q (x,s) = Q(0, s) cosh T'x -P (0, S) sinh yx (2. 33)
Z

c

This will continue to be true in all further developments.

The foregoing analysis is based on turbulent conditions, but it

holds equally well for laminar flow. For laminar flow,

f = 32pAq (2.34)

AD2

and n = 1. Thus,

R - 32 p (2. 35)
AD 2

where ju denotes dynamic visdosity."

For a pipe having one end closed the mean flow is zero. Here

the analysis breaks down only in the determination of the frictional re-

sistance term. It appears reasonable to assume the coefficient of re-

sistance for this case to be the same as for laminar flow.
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2. 5 Frequency Response and System Parameters.

The variables p(x, t) and q(x, t) are considered the output of the

system. The input is p(0, t) and q(0, t). Then, the frequency response

of the system is obtkined from Equations (2. 30) and (2. 31) by replacing

s by jw. That is,

P(x,w) = P(0,w) cosh yx + ZcQ(0, w) sinh 'yx, (2. 36)

and

Q(x,w) = Q(O,w) cosh -'x +P-('W) sinh 'yx (2.37)zc
where

2
y, = jw C (R +'jwL), (2.38)

and

Z 2  R+'L (2.39)zC = (2.39

The propagation coefficient, y', can be expressed in the form

a + jP by finding the roots of Equation (2. 38). The attenuation constant,

a , is given by
1

a= +oL - wL (2.40)

The phase constant, /0, is given by

1

=w (,R 2 + 'L2 + L) . (2.41)

The characteristic impedance, Z ,can also be expressed inc

complex form by finding the roots of Equation (2. 39). It is given by

z 1 (2.42)
c - C (P ja)
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Expanding Equation (2. 40) in powers of R 2

SK= [ ( - -1 +. .1 (2.43)

If the above series is assumed sufficiently approximated by its first

term, Equation (2. 43) becomes

R (2.44)

By a similar argument, Equation (2. 41) becomes

W * -(2.45)
a

Assuming a to be small as compared to /3, the characteristic impedance

can be considered real and given as

Z , -- La. (2.46)c

Actual calculation of a, ý, and Z for various systems by both
c

exact and approximate formulation has shown the approximations to be

of sufficient accuracy with the possible exception of very low frequen-

cies (20) Therefore, Equations (2. 44), (2. 45), and (2. 46) will be used

in further developments.



CHAPTER III

TRANSFER FUNCTION DETERMINATION

3. 1 Introduction.

Using Equations (2. 36) and (2. 37), transfer functions relating

output pressure and flow to input pressure are obtained for a single

pipe and parallel pipes. Extension of the single pipe analysis to pipes

in series is described. The transfer relations for single and series ,,

pipes are obtained in two different forms, both giving identical results

and each having merit for different situations. The development is

based on total length of a component, but can easily be generalized

for any arbitrary point in the system.

3.2 Single Pipe.

Figure 3 depicts a single pipe which is the ith component of a

system. The receiving and sending ends of -the pipe are denoted by i

and i+l, respectively. The complex pressure and flow rate variations

at a point i are denoted Pi and Qi" The absolute values of these vari-

ables are P. and ii

The impedance Zi at a point i is defined as the ratio of pressure

to volume flow rate at that point, i.e.,

P.
Zi Q. (3. 1)

23
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The absolute value of Zi is Zi, and its phase angle is Oi' i.e.,

Z. Zie (3.2)

Pi+1 x1i Pi

Qi+l Qi

flow
i+1

i+l1 i

Figure 3. Single Pipe.

Denoting y and Z of pipe i as 7i and Zci, Equations (2. 36) and

(2. 37) can be manipulated to yield

Sz

P P cosh yiIi + i sinh Tif1 -.

(3.3)
= P.G.P i G

111

and

Qi z coshT.ii+ 1  sinhyii] i

(3.4)=P.H.
1 1

where G. and H. are transfer functions. The complex functions G.
1 1

and H. can be expressed in more suitable form for numerical use by1

replacing yi by a. + JO. . Equations (3. 3) and (3. 4) represent one form

of transfer function determination.

The reflection coefficient at a point i is defined as

Z. -Zi Z.1 + Z.c (3. 5)

I c"
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The magnitude of F is , and its phase is 0.. Using Equation
1 1i 1

(3. 5), Equations (2. 36) and (2. 37) are manipulated to give

P Pi+ i e___+___e__i , (3.6)

1 + i

and-

Qi+ P i z + 1 (3.7)

The second useful form of transfer function determination follows

from taking the absolute value of both sides of Equations (3. 6) and (3. 7)

This gives

a ' I" 1 + A 2 + 2Ai Cos q'iP. R e 1

1+1 2 21 - 1-t1 + ri + 2 ri cos eij

(3. 8)
P G7,

and

a+ = ie I " 1 + A2 _2A. cos O#i I

12

Zei + ri + 2 ricos 0i

(3. 9)
= P. H.

S11

where

A. = e ' , (3. 10)

and

Oi -23ili + .i (3. 11)
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The amplitude density spectrums of the pressure and flow rate

at the point of i + I are obtained either by taking the absolute value of

results from Equations (3. 3) and (3. 4) or by employing Equations (3. 8)

and (3. 9).

3.3 Series Pipes, 0

It has been shown that transfer functions can be obtained relating

the output at a point in a series system to the input at any other

point (36, 92) The resulting functions are quite complicated and seem

to possess no advantages over the following metho'd of analysis.

Consider the series piping system shown in Figure 4. The no-

tation follows that of the preceding section. The logical method of

analysis follows from either Equations (3. 3) and (3. 4) or Equations

(3.8) and (3. 9).

flow #1

n 2

n+l n 3 2 1

Figure 4. Series Piping Systerm.

The analysis, starts at the point 1 where end conditions are known,

i.e., P 1 and Z1 are known. Using Equations (3. 3) and (3.4) or Equa-

tions (3. 8) and (3. 9), P 2 and Q2 or P 2 and Q2 are obtained. The pro-

cedure is repeated for each segment until the desired point is reached.
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To repeat the above procedure, the impedance Z. of each ith

segment must be determined. If Equations (3. 3) and (3. 4) are being

employed,
Gi-.

Zi H. (3.12)

i-i

With reference to Equations (3. 8) and (3. 9)

G i.- 1 JetZ. e e (3. 13)

i-1

where

-1 2A sin
Oi tan iA2 (3. 14)1 2

i-i

as can be shown by manipulating Equations (3. 6) and (3. 7).

3. 4 Parallel Pipes.

A parallel piping system is shown in Figure 5. The parallel

components are not necessarily dimensionally or materially identical.

[r+#m ml[

m In -

flow F

1' 1i 11

Figure 5. Parallel Piping System

The development starts with P. and Z. assumed known which in
1 1 i

turn determines Q .. The following relationships are used:
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Pi = P1  P 2  " = rm (3.15)

Qi = Q1 + Q2 + " + Q ; (3.16)

Pi+l = PI' = P 2 " P = P ; (3.17)

Qi+l = QI1 + Q2' "+Qm' (3.18)

Using the notation

Bk = cosh 7kIk (3. 19)

Tk = sinh Tk~k (3.20)

and

Mk sinh (3. 21)- ck T~

where k refers to pipe number, Equations (2. 36) and (2. 37) give

P = PkB + T (3.22)
k' k k Qk k'

and

Qk' =QkBk + PkMk (3. 23)

k = 1, 2,...., m. Using relationships (3. 15) and (3. 17), subtractidn

of Equation (3. 22) for k = 1 from each of the remaining Equations (3. 22)

yields the m- 1 equations

TQI - TkQk P (B B1 ) (3. 24)

k = 2, 3, .... , m. Adding Equations (3. 23) and substituting relation-

ships (3. 15) and (3. 18) gives

m In

Qij -~ B kQk = iY.Mk .(3. 25)

k=l k=l

Equations (3. 16), (3. 24), and (3. 25) provide m+1 linearly inde-

pendent equations in the m+l unknowns Qi4, and Qk) k=1, 2, .... , m.
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Thus, Qi+1 can be determined, and once any Qk is found, Equation

(3.22) yields Pi+ directly. Also, the pressure and flow rate at any

point in a pipe k can be determined by finding Qk and using Equations

(2. 36) and (2. 37).

The results of the analysis can be expressed in the general forms

Pi+l =PiGi (3.26)

and

Qi+ 1 P. H. (3.27)

where G. and H. are transfer functions. For m=2,1 1

T [ (B 2 -B).T
Gi = B 1 + 1 ( 1 + T2)(3.28)

and H. (B 2 - B1) 2 + (M1 + M2 )(T1+ T2 )] Zi+ B 1T 2 + B 2 T1

1Z, T 2 ) (3. 29)

The functions G. and Hi become increasingly complicated as m in-

creases.

If the parallel pipes -are dimensionally and materially alike,

Q Qi (3.30)

and

Qk' 1Y i (3.31)

Then, Equations (3.22) and (3.23) give

P =P. IB +-L-
i+l i (k m Z.

(3. 32)
- PiGi,
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and

Qi+l = i z +mk)
:1

(3. 33)
SP. H.

1 1

for any k = 1, 2, ... , m.

3. 5: Summary.

The results of this section make it possible to determine pres-

sure and flow rate fluctuation at any point of a system, such as shown

in Figure la, in terms of an input pressure and impedance at some other

point of the system. The determination of this input pressure and im-

pedance is discussed in the next chapter.

The transfer functions and usually the input involved in the analy-

sis of a system are frequency dependent. The output of the system is

then dependent on frequency; in fact, it varies considerably over re-

latively small frequency increments. Thus, analysis of a piping system

for a large range of frequencies involves an impractical amount of nu-

merical computation. For this reason, the possibility of finding the

maximum and minimum system output is investigated in Chapter V.



CHAPTERIV

INPUT DETERMINATION

4. 1 General.

Application of analysis methods developed thus far is dependent

on ability to determine an input pressure and impedance at some point I
in a piping system. In the general sense, the input to a system is

caused by a system element producing a flow disturbance. Typical

flow disturbing elements are pumps and valves.

If the input is deterministic., i. e., expressible as a function of

time, the Fourier transforms of functional relationships for pressure

and flow rate fluctuation can usually be obtained (96) This yields the

necessary information concerning input for analysis. Two determinis-

tic inputs often encountered in piping systems are reciprocating pumps

(94, 95) and valve closures (76, 93) -

In the case of c~entrifugal or -similar type pumps, the input is

non-deterministic, or random. Many other flow disturbing devices

such as valve:s produce random inputs. Statistical methods must then"

be introduced in an analysis incorporating such inputs (20, 36, 92)

Statistical analysis lends itself toward uncertainty, because determin-

ation of statistical properties concerning pump and valve inputs is at

best questionable.

The foregoing discussion of input determination has been directed

31
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toward a problem of prediction, i. e., given a system containing a

flow disturbing element, what is the pressure and flow rate variation

at some other point in the system'? Anoiher problem of equal impor-

tance is one of specification, i. e. , given a system, what is the allow-

able pressure and, flow rate variation at a point it! the system so as

not to exceed some specified variation at another point ? More speci-

fically, given a system, what is the allowabl-e pressure amplitude den-

sity spectrum at a point in the system so as not to exceed some speci-

fied 'pressure amplitude spectrum at a termination point of the system,>

The methods of analysis developed in Chapter III are easily applied

to the problem of specification for systems with deterministic or random

inputs. The remainder of this chapter and Chapter V is directed toward ]
problems of this type.

Assuming a pressure amplitude density spectrum is specified at a

termination point of a system, the impedance at that point must be de-

termined to employ the transfer relations developed in Chapter III. This

impedance is denoted by Zr. Closed and open end terminations are dis-

cussed in the following.

4. 2 Closed End Impedance.

For a pipe with one end rigidly closed, the flow rate fluctuation at

the closed end is zero. The closed end impedanc'e is then infinite. It

is also easily shown that the reflection coefficient is 1.

A stub line such as shown in Figure la as pipe D is a case of

closed end termination. In this case, the impedance of the stub line

at the junction is necessary in analysis of the complete :system. From

Equations (. 3) and (3. 4), the impedance is calculated directly by
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Z =ZcD coth- yD D (4.1)

4. 3 Open End Impedance.

The impedance at an open end termination of a piping system is

usually considered zero on the hypothesis that pressure fluctuation at

that point is zero. This assumption is valid only for very low frequen-

cies where the range of validity depends on pipe size.

If the velocity at the open end is considered harmonic and of con-

stant profile, the problem becomes the classical acoustics problem of

determining the impedance of a rigid circular piston set in an infinite

baffle. The foregoing assumptions seem reasonable and, at least,

offer a simple method of determining the open end impedance.

An excellent development of the solution to the afore mentioned

problem can be found in the text by Kinsler and Frey (107) The de-

sired result is

Zr = l(x) + A Xj(xx] (4.2)

where c is the velocity of wave propagation in the 7ihfinite medium, and

x coD (4.3)

The area of the open end is A, and the diameter is D. Also,

2 4 6
2J_(X x x xR1 (x) = - x 2.4 x +. 42. 62. - .. (4.4)

2. 42 6 '2-4 *6 *8

and

2K(X) 4 _ x3 5
X1 (x) x2 x 1L 25 + 32 52. (4.5)

x 3.5 3.5 .7
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where K1 (x) is a related Bessel function. For small value.s of x,

2
R (x)~ - ,8 (4.6)

and

4x (4.7)

The functions R,(x) and X (x) are shown graphically and tabulated

numerically in Kinsler and Frey's book. The graphical representation

is reproduced in Chapter VI, Figure 8. The functions are also approxi-

mated for computational purposes in that chapter.

Although the open end impedance depends on frequency, it can be

considered essentially constant over frequency bands. This fact is used

in the next chapter.



CHAPTER V

MAXIMUM AND MINIMUM

ALLOWABLE PRESSURE SPECTRUM

5. 1 Introduction.

An allowable pressure level at some point in a piping system for

a given frequency can now be determined. To obtain a complete allow-

able pressure spectrum for a sizable frequency range, a large number

of calculations must be made. For this reason, the problem of deter-

mining a maximum and minimum allowable p~ressure ,spectrum is now

approached.

5. 2 General.

Systems to be studied will have open end termination as discussed

in Section 4. 3 of this report. This type of termination is normally the

case encountered insea connected systems. The -specified pressure

amplitude spectrum at the termination is assumed constant over a fre-

quency band. This will allow easy adjustment to the true overboard

specifications of pressure. Thus, the specified pressure spectrum and

impedance at the termination are considered constant over a frequency

band where the bands cover the frequency range of interest, e. g., one-

third octave bands from 0 to 10, 000 cps.

The object of the investigation is then to determine the maximum

and minimum allowable pressure levels at some point in the system

35
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for each frequency band. Once these levels are determined, the

following remarks can be made about the actual pressure amplitude

occurring at the point for a given frequency in a band.

If the pressure amplitude is greater than the maximum level,

the pressure amplitude at the termination is greate.r than the specified

amplitude. If the pressure is less than the minimum level, the fermi-

nation amplitude is less than the specified pressure. If the pressure

is between the maximum andc: mrinimum levels, the termination pres-

'sure -can be either above or below the specified pressure amplitude.

For this case, the allowable pressure for the frequency in question

must be calculated to reach a conclusion.

If these maximum and: rminimum levels can be determined, the

problem of specification is reduced considerably. Much effort by the

authors has been devoted to determining these extremes. It has been

concluded that the maximum and minimum levels cannot be determined

analytically for any but the simplest system, i. e., a single pipe.

The next section describes a method for analytically determining

the -desired extremes for a single pipe. Section 5. 4 discusses the

problems encountered in attempts to extend the analysis to pipes in

series. The developments are based on simple arguments. Methods

of variational calculus attempted provided no information other than

the obvious.

5. 3 Single Pipe.

The single pipe system is shown in Figure 6. Equations (3. 8)

and (3. 9) give

I + A 2 + 2A cos V) 1

2 r . l+fr + 2 (Cos

rr rrcsrj
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and

S Al 2 Co
r e I 1 (5.2)

cl + + 2r cos 2

r

flow #

2 r

Figure 6. Single Pipe.

Since all end conditions are assumed constant over a frequency

band, the only frequency dependent parameter in Equations (5. 1) and

(5.2) is 0 1' or qjl = 20211 1 + 0 " Obviously, the maximum P 2 occurs

when cos qi = 1, and the minimum P occurs when cos = -1. Simi-

larly, cos 1i 1 gives minimum Q 2 , and cos • = -1 gives maximum

The desired maximum and minimum pressure levels for a fre-

quency band are then

Pr e l£ 1 (l+A 1 )

S-2 + '2 cos 0r53
r2

and

P e'l£ 1! IA1
er l (1-AI) (.4

-2m [ 2 (+
2

.Cos ]

The number of calculations required to cover the frequency range of

interest depends only on the number of bands chosen to c'over the range.
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For a narrow bandwidth, there is a possibility the values of

cos 01 used to bbtain Equations (5. 3) and (5. 4) do not occui in the band.

If this discrepancy cannot be allowed, it is an easy matter to determine

the maximum and: minimum values of cos V for the band and use them

in Equations (5. 1) and (5. 2).

5. 4 Series Pipes.

Two pipes in series are shown in Figure 7. The maximum and

minimum allowable pressure levels for a particular frequency band at

point 2 are computed from Equations (5. 3) and (5. 4). The problem is

to determine the -extreme pressure levels for the same frequency band

at point 3.

I i
flow #2 #1

2

2.

3 2 r

Figure 7. Two Pipes in Series.

Equation (3. 8) gives

fl1 + A 2 + 2A 2 Cos 02
e 2 e22 - 2 (5~.5)

3 P2 '[~ 2+2 csO

2 2

Unlike the termination impedance., Z 2 cannot be considered constant

over the frequency band. In fact, its rate of change with respect to

frequency is great. Thus, for all but very narrow bandwidths, 12
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ranges from zero to 1, and 02 will range from zero to 7r in the fre-

quency band.

The maximum P 3 obviously occurs under the following condi-

tions:

1. P2 is a maximum.

2. cos 0 2 = 1

3. cos 02 -.

4. r 2 is a maximum.

Similarly, minimum P3 will occur under.the conditions:

1. P2 is a minimum.

2. cos 02 = -1

3. cos 02 1.

4. r 2 is a maximum.

It can be shown in both cases that conditions 1. 2, and 4 cannot

occur at the same frequency. Furthermore, the possibility of condi-

tion 2 occurring simultaneously with even one of the other three condi-

tions is very remote.

It was hoped that even with the stated discrepancies the condi-

tions might give levels which would provide an estimation of the actual

extremes. Example 2 of Chapter VI discounts this idea by shoffing

the levels to be completely unreasonable. Successive application of

the conditions to series systems with more than two pipes magnifies

the factor of unreasonability.

In conclusion, it seems the analytical unpredictability of the

junction impedance functions F and 0 relative to the function 0 defies

analytical determination of maximum and minimum allowable pressure

levels for complex systems.



CHAPTER VI

EXAMPLES

6. 1 Introduction.

Application of piping system analysis methods developed in Chap-

ters I-V is illustrated by three numerical examples. The examples are

oriented toward the problem of specification. The first example deals

with open end impedance calculation. Determination of maximum and

minimum allowable pressure levels for a series piping system is at-

tempted in the second example. The third example illustrates the

method of complete analysis for a relatively simple, but practical,

piping system.

The pound-foot-second system of units is used throughout. All

pressure amplitudes are expressed in decibels by the conversion

Pdb = 2 0 lOgl 0 -p-- (6.1i)

0

where P denotes pressure pulsation magnitude in psf and the reference

pressure Po = 4. 18 x 10 . psf (.0002 dynes per cm .). The fre-

quency range of interest is 0 to 10, 000 cps in each example.

The specified termination pressure amplitude in the second and

third examples is taken as zero decibels over the complete frequency

range. Results of the examples can then be added to any other speci-

fied level in decibels to obtain allowable levels for the desired speci-

fication. 40
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The liquid considered has the following physical properties:

p = 2. 0 slugs/ft3.

P = 2.4 x 10-5 lb-sec/ft 2 .

c = 4900 ft/sec. ;

K = 4.75x 10 7psf.

The elastic modulus of the pipe material is 2 x 109 psf. The

constant n is taken to be 1. 8 for all pipes.

6.2 Example 1. Open End Impedance.

The purpose of this example is to numerically show the frequency

characteristics of the open end impedance discussed in Section 4. 3. The

impedance functions R1 (x) and X,(x) defined by Equations (4. 4) and

(4. 5) are shown graphically in Figure 8 as reproduced from Kinsler

and Frey (107)

For digital computation purposes, approximating polynomials for

0 < x < 8 were calculated from numerical data in Kinsler and Frey.

These polynomials are

R 1 (x) (0. 124324) x- (5. 051 x 10) x4 +

(9. 618 x 10-5 )x - (9. 199 x 10-7) x8 + (6.2)

(3. 621 x 10-) x0

and

X 1 (x) (0. 4220302) x - (2. 73694 x 10- 2 ) x 3 +

(7. 08794 x 10- 4 ) x 5 - (8. 45110 x 10-6 )x 7

(3. 91750 x 108) x9

Each polynomial has a standard error of estimate of 0. 0016 for 28 points.

Equations (6. 2) and (6. 3) were used in Equation (4.2) to calculate

the open end impedance of a 5. 157" inside diameter pipe. The reflection
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coefficient of the open end was computed from Equation (3. 5) where

the velocity of propagation in the pipe'was taken to be 4200 ft/sec.

Results are shown in Figure 9..

6. 3 Example 2. Maximum and Minimum Analysis.

The series piping system shown in Figurel0 is used to illustrate

the methods of finding allowable maximum and minimum pressure levels

discussed in Chapter V. Pertinent system data is provided by the fig-

ure. Pipe diameters are assumed such that the velocities of propaga-

tion are as given.

The input impedance was calculated in the previous section. For

this example, the reflection coefficient was assumed constant over oner

third octave filter bands as shown in Figure 11. Using these constant

values, P2max and P2min were computed from Equations (5. 3) and

(5. 4) where P is taken as zero decibels. Pressure levels at the pointsr

3 and 4 were calculated on the basis of conditions outlined in section

(5.4).

Results of the analysis are given in Figures 12a and 12b. AS

expected,the allowable levels at points 3 and 4 are unreasonable.

6. 4 Example 3. Complete Analysis.

Figure 13 depicts a suction line of a piping system. System data

is given on the figure. The analysis objective is to determine the allow-

able pressure amplitude spectrum at the pump so that the pressure

amplitude spectrum of zero decibels at the terminus is not exceeded.

The strainer plate at the termination poses a somewhat different

situation than previously discussed. It is evident that adding the hole

impedances as parallel impedances will give the total impedance Zr
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If the hole impedances are identical, Zr is found by dividing the impe-

dance of one hole by the total number of holes. The problem is then to

determine the impedance of each hole. In this sý,xiple, each hole of the

strainer plate is assumed to have the same impedance which is given by

the method of open end impedance determination discussed in Section

4. 3. The physical situation violates the infinite baffle condition imposed

on this method, but this discrepancy does not seem to merit a more in-

volved study at this time. The transition in area from the strainer plate

to the first pipe is neglected.

Actual computations needed for analysis are described by the

FORTRAN program shown in Figure 14. Necessary explanations ac-

company the program. Relationships coming either in full or in part

from equations in preceding chapters are noted. Necessary revisions

of these equations due to mean flow in the direction of positive lateral

direction have been made as outlined in Section 2. 4. Erroneously, the

velocity of propagation, c, was taken as 4100 ft/sec in the calculations.

For qualitative results, computations for freruency increments

not to exceed 4 cps were found to suffice. For frequency ranges of spe-

cial interest, the increment of computation was reduced to 0. 5 cps.

The allowable pressure spectrum at the pump was found to be

somewhat periodic. A typical segment of the spectrum is shown in

Figure 15. The critical part of this segment is in the frequency range

4500 <f< 4750 cps. It was found that the spectrum contained waveforms

almost identical to the critical part of this segment every 1050-1100

cps; the first such waveform occurring at approximately 500 cps.

It was also found that all "local" absolute maximums and mini-

mums occurred in these critical parts of the spectrum. Thus, to

_________
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obtain the maximum and minimum allowable pressure levels sought

in Chapter V, calculations are needed only for these critical ranges of

frequency. Figure 16 shows the maximums. and minimums obtained

in this manner.
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DIMENSION ZC(3),V(3).EL(3),ALF(3),SINH(3),COSH(3)

40 PI-3.1415926 Pr , .

READ l.CON1I,CUN2 CON -0 1" 1 CON2 [T4. (tJ Iq(4

DO 7 1-1,3

READ I,ZC(I),V(I),EL(I),ALF(I) ZC(IJ Z, . V(I) 0a, C•Il(1)-l, ALr(I) -, 1 1, 2,:3

ARG-ALF(I)*EL(I) ARG oil,

E.EXP(ARG)
S INH(I )(E-1 .O/E/2.0 SINH(i)} =inh ,iI,

7 COSH( I ).(E+.I0/1)/2.O COSH(s) -cosh il

IF (SENSE SWITCH. 2) 4,3

3 READ 1.CDCCM C - f(cps) , DC - Af , CM = fma.

GO TO 5

4 ACCEPT 1,C Accept arbitrary f(cis) from console typewriter

5 WiC*2.0*PI W = . = 2et

X2-CONI*C**2 X2 Re [Impedoate at the sea) 1. 0•0•1-5 f2 .Eq. (4. 2)

Y2O.CON2*C Y2 I=m (Impedance at the sea3 0.663 f

1-1 Pipe Number I

EXECUTE PROCEDURE 10

XI-SK*ZC( 0) X (ZcI) IRe f.Inh yrt) Eq. (3.3)

Yt-SHJ*ZC(I) YI= (Z7a) Itm I inbt 'Yj

EXECUTEV PROCEDURE 2

EXECUTE PROCEDURE 30

GiDD-20.O*O.43429448*LOG(GAB) GI1DB = gain in db across pipe no. I Eq. (G.11

XI-CM x- Re Icosh y51, Eq. (4, 2)

YICHJ x'i IM facosh -y,1,

EXECUTE PROCEDURE 2

X2-X3-SH/ZC( I)

Y2-Y3-SHJ/ZC( I)

XI-G

YI-GJ

EXECUTE PROCEDURE 2

zI-X3 Z! =R]e f Impedapce at junction. pipe .... I• Eq, (3. 1

I-3 ZIJ=2 Im (Impedac .... j unction. pipe .... I}

1-2 Pipe Number 2

EXECUTE PROCEDURE 10

X I-ZC( I)*CH

Y I=zc([I)*CHJ

X2-SH

Y2.SHJ

EXECUTE PROCEDURE 2

Z2--xJ Z2 Re •Impedance.at junction, pipe .... 2} Eq(4, 11.
Z2J--Y3 Z2 = Im [IImpedac .... ljunction, pipe .... 2)
X i-ZI*Z2-Z 1JwZ2J

YI.ZI*Z2J+Z2*ZIJ =x1 (l Impedance at junction, pipe no. 3 Eq. (3. i1

EXECUTE PROCEDURE 2

Figure 14. FORITR:AN Program for Complete Analysis Procedure,
Example 3.
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Pipe Number

EXECUTE PROCEDURE 1O

Xl.SH*ZC(I) Xi (Z 0c3)Re I. inh y 3 t 3 ) Eq. (3. 31

YI-SHJ*ZC(i) Y I (ZC3)Im t, inh -y7313'

x2-x3 X2 Re, ýmpedan.e at Junotion, pipe no. 3 Eq.(3, 1)

Y2-Y3 Y2 1I o mpedance at Junction, pipe no. 3)

EXECUTE PROCEDURE 2

EXECUTE PROCEDURE 30

G2pB-20.On0.i43429i44B*LOG.(GAB) G2DB - gain in db across pipe no. 3 Eq. J6. 1)

G-GIDB+G2DB G - systen gain in db

IF (SENSE SWITCH I1) 20.21

20 PUNCH 13,OIDBG20B.G,C

GO TO 22

21 TYPE 13,G1DB,GIDB,G,C

22 IF (SENSE SWITCH 2) 4,23

23 C-C+DC Increment frequency

IF (C-Ci) 5,5,40 Test for maximum frequency

BEGIN PROCEDURE. t2

Q.X2*X2+Y2*Y2
X3- (X I*X2tY I*Y2)/Q (X3) + j(7£31 J(l

Y3-(X2*YI-XI*Y2)/Q

END PROCEDURE 2

BEGIN PROCEDURE 30 1:

G-CHM-X 3

GJ-CHJ-Y3 GAB = jPre.sure gain)

ARG-G*G+GJ*GJ

GAB-SQR (ARG)

END PROCEDURE 30

BEGIN PROCEDURE 10

B.W*EL(I)/V(I) B= 011i

SB-SIN(O) SB sin (p3ill)

CB-COS(B) CID cox (1300

CH-COSH( I )*CB CH Re {cosh yitj• Iq. (3.3)

CHJSINH(I(*SB CHJ m cosh I. 'i

SH-SINH(I)*CB SHX = Ref {aioh yIii}

SHJ-COSH(I)*SB SHJ= Im {sinh yitI

END PROCEDURE 10

1 FORMAT (EIO.3,EIO.3,EIO.3,EIO,3) 1 Input, output format control

13 FORMAT (F7.I,F7.I,F7.,,3X F8.i)

END

Figure 14, FORTRAN Program for Complete Analysis Procedure,
Example 3.
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